Comparative Analysis of Robab’s intervals with the Zarlinian Scale

Document Type : Research Paper

Authors

1 Faculty Member of Music Department, Faculty of Art and Architecture, Tehran Central Branch, Islamic Azad University, Tehran, Iran.

2  Faculty Member of Music Department, Faculty of Art and Architecture, Tehran Central Branch, Islamic Azad University, Tehran, Iran.

3 Faculty Member of Music Department, Faculty of Music, Tehran University of Art, Tehran, Iran.

4 Master of Playing International Instruments, Department of Music, Faculty of Art and Architecture, Tehran Central Branch, Islamic Azad University, Tehran, Iran.

Abstract

The current research contains a comparative analysis of intervals for the instrument, Robab, as recorded in Al-Farabi’s book, titled Al-Mousighi Al-Kabir.  This research brings together the analysis of this instrument in regards to the Zarlinian scale, in order to find the relation between Robab’s intervals and those of the Zarlinian scale. First, the ratios of the frequencies of the Robab’s intervals have been analyzed. With a brief explanation of the Zarlinian scale, these unique intervals have been compared against the intervals of the Zarlinian scale by means of multiplying and dividing the corresponding mathematical proportionalities. In a reevaluation of the Zarlinian scale, notwithstanding its commonly-known problems which include a perfect fourth with a frequency ratio greater than that of 4:3 and the perfect fifth with a frequency ratio less than that of 3:2, we found another problem regarding the formation of the Zarlinian scale. While researchers currently believe that this scale consists of two kinds of a chromatic semitones, and one kind of a diatonic semitone, this article will prove that this scale is comprised of two kinds of a diatonic scale, and only one kind of a chromatic semitone. Conclusion: Findings we achieved in this article could be divided into these divisions as given below:

Interval frequency ratios of the Robab instrument, according to Farabi’s aforementioned book, fully conform to that of the diatonic major scale based on the Aristoxen-Zarlinian system of intonation.
Lack of conformity of the frequencies of the interval ratios, within the Robab with that of the chromatic Aristoxen-Zarlinian
Stating a problem pertaining to the Aristoxen-Zarlinian theory of intonation system based on the arrangement of chromatic intervals therein: In former theories, the Aristoxen-Zarlinian scale was believed to contain a kind of diatonic semitone with a proportion of 16:15, equal to 28.02 Savarts, and equal to 111.72 Cents. Also two kinds of a chromatic semitone with proportions of: A. A major tone equal to 135:128, equal to 23.12 Savarts, and equal to 92.17 Cents
The chromatic semitone in a minor tone, with a proportion of 25:24 equal to 17.72 Savarts, and equal to 70.66 Cents

Given a major scale from the upper chromatic semitone based on these proportions, the placement of major and minor intervals would become interchanged.
 
Suggesting a reformative theory: According to findings in this article, the mentioned scale consists of two kinds of a diatonic semitone, and only one kind of a chromatic semitone as explained below: Diatonic semitone in major tone: proportion equal to 16:15 equal to 28.02 Savarts, equal to 111.72 Cents. diatonic semitone in minor tone: proportion equal to 256:243 equal to 22.63 Savarts, equal to 90.21 Cents. And the chromatic semitone: proportion equal to 135:128, equal to 23.12 Savarts, equal to
 92.17 Cents. Given the mentioned frequency ratios above, intervals of the Robab will fully conform to the ratios of the chromatic Aristoxen-Zarlinian scale. Also if a major scale would be formed based on these ratios on the upper chromatic semitone, the minor and major semitones won’t get switched anymore.


Keywords

Main Subjects


اُرموی، صفی الدین (1380) الادوار فی الموسیقی، مترجم: ناشناس، به اهتمام: آریو رستمی، تهران: میراث مکتوب.
برکشلی، مهدی (1364) ردیف هفت دستگاه موسیقی ایرانی موسی خان معروفی، شرح ردیف موسیقی ایران، تهران: انجمن موسیقی ایران.
برکشلی، مهدی (1392) موسیقی کبیر فارابی، ترجمه و شرح به فارسی، تهران: انتشارات سروش.
برکشلی، مهدی (1398) مداومت در اصول موسیقی ایرانی گامها و دستگاه‌های موسیقی، تهران: انتشارات فرهنگستان هنر.
پورتراب، مصطفی کمال، علیزاده، حسین، افتاده، مینا، اسعدی، مینا، بیانی، علی و فاطمی، ساسان (1386) مبانی نظری و ساختار موسیقی ایرانی، تهران: نشر چشم انداز.
پورتراب، مصطفی کمال(1387) مجموعه مقالاتی پیرامون دانستنی های علمی موسیقی، تهران: نشز چشمه.
رهنما، هادی، نوروزیان علی‌اصغر، رضا قلی‌زاده، احمد (1336) فیزیک. تهران: شرکت سهامی نشر کتاب.
فرهت، هرمز (1386) دستگاه در موسیقی ایران ترجمه: مهدی پورمحمد، چاپ سوم، تهران: انتشارات پارت.
کیانی، مجید (1377) مبانی نظری موسیقی ایران، تهران: موسسه فرهنگی سروستاه. کیانی، مجید (1397) هفت دستگاه در موسیقی ایران، چاپ چهارم، تهران: انتشارات سوره مهر.
مراغی، عبدالقادر بن غیبی حافظ (1344) مقاصد الالحان، به اهتمام: تقی بینش، تهران: بنگاه ترجمه و نشر کتاب.
مراغی، عبدالقادر بن غیبی حافظ (1370) شرح الادوار، به اهتمام: تقی بینش، تهران: مرکز نشر دانشگاهی.
 Barker, A. (1994). Ptolemy's Pythagoreans, Archytas, and Plato's Conception of Mathematics, Phronesis, Vol. 39, No. 2, pp. 113-135.
Barker, A. (1991). Review, Music & Letters, Vol. 72, No. 1, pp. 71-74.
Bedford, L. H. (1956). THE ARITHMETIC OF THE MUSICAL SCALE, Journal of the Royal Society of Arts, Vol. 104, No. 4977, pp. 465-481.
Berger, K. (1980). Theories of Chromatic and Enharmonic Music in Late 16th Century Italy. UMI Research Press, vii + 178 pp)
Bergholt, E. (1894). Greek Musical Notation, The Musical Times and Singing Class Circular, Vol. 35, No. 620, pp. 696- 698. Bowers, J. F. (1994). In Which Key Did the Angels Sing?, The Mathematical Gazette, Vol. 78, No. 482, pp. 119-126.
Budden, F. J. (1967). Modern Mathematics and Music, The Mathematical Gazette, Vol. 51, No. 377, pp. 204-215.
Burns, L. (1993). J. S. Bach's Mixolydian Chorale Harmonizations, Music Theory Spectrum Vol. 15, No. 2, pp. 144-172. Carlos, w. (1987). At the Crossroads, Computer Music Journal, Vol. 11, No. 1, Microtonality, pp. 29-43.
Cazden, N. (1971). A Simplified Mode Classification for Traditional Anglo-American Song Tunes, Yearbook of the International Folk Music Council, Vol. 3, pp.45-78.
Cazden, N. (1958). Pythagoras and Aristoxenos Reconciled, Journal of the American Musicological Society, Vol. 11, No. 2/3, pp. 97-105.
Clark, S. (1999). Schenker's Mysterious Five, 19th-Century Music, Vol. 23, No. 1, pp. 84-102.
Fonville, J. (1991). Ben Johnston's Extended Just Intonation: A Guide for Interpreters, Perspectives of New Music, Vol. 29, No. 2, pp. 106-137.
Gill, H. (1937). The Modes in Musical Tuition, The Musical Times, Vol. 78, No.1134, pp. 710-712.
Goddard, J. (1901-1092). The Philosophy of Our Tempered System, Proceedings of the Musical Association, 28th Sess., pp. 45-65.
Hall, E. D., & Hess, J. (1984). Perception of Musical Interval Tuning, Music Perception: An Interdisciplinary Journal, Vol. 2, No. 2, pp. 166-195.
Henbuehl, D. K., & Schmidt, S. (1962). On the Development of Musical Systems, Journal of Music Theory, Vol. 6, No. 1 pp. 32-65.
Huffman, C. A. (2008). The "Pythagorean Precepts" of Aristoxenus: Crucial Evidence for Pythagorean Moral Philosophy, The Classical Quarterly, New Series, Vol. 58, No. 1, pp. 104-119.
Chailley, J., & Challan, H. (1951). Theorie Complete de la Musique – Alphonse Leduc -Editions Musicales-paris, France. Collier, W. G., & Hubbard, T. L. (2001). Musical Scales and Evaluations of Happiness and Awkwardness: Effects of Pitch, Direction, and Scale Mode, The American Journal of Psychology, Vol. 114, No. 3, pp. 355-375.
Curtis, J. (1924). Reconstruction of the Greater Perfect System, The Journal of Hellenic Studies, Vol. 44, Part 1, pp. 10-23. Johnston, B. (1964). Scalar Order as a Compositional Resource, Perspectives of New Music, Vol. 2, No. 2, pp. 56-76. Kimmel, W. (1980). The Phrygian Inflection and the Appearances of Death in Music, College Music Symposium, Vol. 20, No. 2, pp. 42-76.
Leigh Silver, A. L. (1971). Musimatics or the Nun's Fiddle, The American Mathematical Monthly, Vol. 78, No. 4, pp. 351-357.
Levin, F. R. (2007). 'Aπειρία in Aristoxenian Theory, Hermes, 135. Jahrg., H. 4, pp.406-428.
Moore, A. (1995).The So-Called 'Flattened Seventh' in Rock, Popular Music,Vol.14, No. 2, pp. 185-201.
Mountford, J. F. (1920). Greek Music and Its Relation to Modern Times, The Journal of Hellenic Studies, Vol. 40, Part 1, pp. 13-42.
Notley, M. (2005). Asymmetrical Dualism and Instrumental Music by Brahms, The Journal of Musicology, Vol. 22, No. 1, pp. 90-130.
Payne, I. W. (1968). Observations on the Stopped Notes of the French Horn, Music & Letters, Vol. 49, No. 2, pp.145-154. A.Polansky, L., Rockmore, D., Johnson, M. K., Repetto, D., & Pan. w. (2009) Mathematical Model for Optimal Tuning Systems, Perspectives of New Music, Vol.47 , No. 1, pp. 69-110.
Raffman, R. (1975). Scalar Control, College Music Symposium, Vol. 15, pp. 34-51.
Reade, J. B. (1999). 83.60 The Mathematics of Equal Temperament, The Mathematical Gazette, Vol. 83, No. 498, pp. 500-502.
Reichenbach, H. (1938). The Tonality of English and Gaelic Folksong, : Music & Letters, Vol. 19, No. 3, pp. 268-279. Thomson, W. (1998). On Miles and the Modes, College Music Symposium, Vol.38, pp. 17-32.
Walker, D. P. (1967). Kepler's Celestial Music, Journal of the Warburg and Courtauld Institutes, Vol. 30, pp. 228-250. Whitesell, L. (2002). Harmonic Palette in Early Joni Mitchell, Popular Music, Vol.21, No. 2, pp. 173-193
Wienpahl, R. W. (1959). Zarlino, the Senario, and Tonality, Journal of the American Musicological Society, Vol. 12, No. 1, pp. 27-41
Yasser, J. (1937). A Plea for Restoration--Part II, The Musical Quarterly, Vol. 23, No. 3, pp. 333-366.